Asset Allocation: From Markowitz to Deep Reinforcement Learning

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Asset Allocation Exploiting Predictors in Reinforcement Learning Framework

Given the pattern-based multi-predictors of the stock price, we study a method of dynamic asset allocation to maximize the trading performance. To optimize the proportion of asset to be allocated to each recommendations of the predictors, we design an asset allocator called meta policy in the Q-learning framework. We utilize both the information of each predictor’s recommendations and the ratio...

متن کامل

Adaptive stock trading with dynamic asset allocation using reinforcement learning

Stock trading is an important decision-making problem that involves both stock selection and asset management. Though many promising results have been reported for predicting prices, selecting stocks, and managing assets using machine-learning techniques, considering all of them is challenging because of their complexity. In this paper, we present a new stock trading method that incorporates dy...

متن کامل

Deep Reinforcement Learning for Resource Allocation in V2V Communications

In this article, we develop a decentralized resource allocation mechanism for vehicle-to-vehicle (V2V) communication systems based on deep reinforcement learning. Each V2V link is considered as an agent, making its own decisions to find optimal sub-band and power level for transmission. Since the proposed method is decentralized, the global information is not required for each agent to make its...

متن کامل

Operation Scheduling of MGs Based on Deep Reinforcement Learning Algorithm

: In this paper, the operation scheduling of Microgrids (MGs), including Distributed Energy Resources (DERs) and Energy Storage Systems (ESSs), is proposed using a Deep Reinforcement Learning (DRL) based approach. Due to the dynamic characteristic of the problem, it firstly is formulated as a Markov Decision Process (MDP). Next, Deep Deterministic Policy Gradient (DDPG) algorithm is presented t...

متن کامل

Deep Reinforcement Learning from Human Preferences

For sophisticated reinforcement learning (RL) systems to interact usefully with real-world environments, we need to communicate complex goals to these systems. In this work, we explore goals defined in terms of (non-expert) human preferences between pairs of trajectory segments. We show that this approach can effectively solve complex RL tasks without access to the reward function, including At...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Social Science Research Network

سال: 2022

ISSN: ['1556-5068']

DOI: https://doi.org/10.2139/ssrn.4148379